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Majority Logic Circuit Minimization Using
Node Addition and Removal
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Abstract—Quantum-dot cellular automata (QCA) is considered
as a promising emerging technology due to its low power dis-
sipation and high device density. Since the majority function is
the main operation in QCA circuits, minimizing the number of
majority gates in QCA circuits is crucial to the corresponding
QCA circuit minimization. A previous work used the node-
merging technique to replace one target node with an existing
substitute node in majority circuits for optimization. However,
this technique may fail when no substitute nodes exist for a target
node. In this article, we propose an enhanced optimization tech-
nique for majority circuits by adding a new node into the circuits
and removing the target node and its fanin nodes. The experi-
mental results show that this technique improves the results of the
node-merging technique on a set of EPFL logic synthesis bench-
marks. Additionally, this enhanced technique can work together
with other optimization techniques. The circuit size reduction in
the integrated approach reaches 1.26 times as compared to the
results using the node-merging technique.

Index Terms—Logic implication, logic optimization, major-
ity logic, node addition and removal (NAR), node-merging,
observability do not care (ODC).

I. INTRODUCTION

W ITH the advances of nanotechnologies, the idea of
using different alternatives to CMOS transistors as

the building elements of very large scale integrated designs
(VLSI) has been proposed [26]. Among these nanotechnolo-
gies, quantum-dot cellular automata (QCA) is considered as
a promising one due to its low power dissipation and high
device density [28], [29], [33]. The operating mechanism of
QCA offers low power and high-speed computation since there
is no interconnection in signal paths of cells. That is, the
Coulombic interactions among cells are beneficial to power
dissipation and state transitions [33], [40].

The fundamental elements for building a QCA circuit are
quantum-dot cells. A quantum-dot cell is composed of four
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Fig. 1. QCA cells and its binary information.

Fig. 2. (a) QCA wire. (b) QCA inverter. (c) QCA majority gate.

quantum dots and two free electrons. By Coulombic repulsion,
these electrons will occupy at diagonal positions with respect
to each other in one cell. Fig. 1 shows two different configu-
rations of electrons in a quantum-dot cell, which present two
distinguishable states. These two configurations are resulted
from the polarization of a quantum-dot cell, denoted as P.
Binary logic information can be encoded by using this cell
polarization, i.e., P = +1 for “1” and P = −1 for “0.”

Quantum-dot cells are used for constructing basic compu-
tation units of QCA, such as wires, inverters, and majority
gates. In Fig. 2(a), a QCA wire comprises a line of QCA
cells for signal propagation from the input cell to the output
cell [19], [26], [41]. An example of the QCA inverter is shown
in Fig. 2(b). By placing electrons in a diagonal position, the
signal starts from A with the value of “1” and reaches at D
with the value of “0”. Note that QCA inverters can also be
realized by only two QCA cells, the layout of the inverter we
showed here is a more general and robust design and can pro-
vide better output polarization [5], [23]. An example of the
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QCA majority gate is shown in Fig. 2(c), which comprises
three input cells and one output cell. The value of the output
signal will obey the majority rule depending on the values of
input signals. For example, if two of three inputs are “1,” like
the input cells B and C, the majority gate will output the value
of “1.”

Since the majority function is the main operation in QCA
circuits, minimizing the number of majority gates in QCA cir-
cuits is crucial to the corresponding QCA circuit minimization.
Recently, many studies about majority logic have been
proposed [1]–[3], [15]–[17], [21], [26], [36], [37], [39], [44].
Kong et al. [26] and Zhang et al. [44] proposed methods
to convert a given Boolean function into its correspond-
ing minimum cost majority expression. Amarú et al. [1], [2]
proposed a new Boolean logic representation—majority-
inverter-graph (MIG), and its axiomatic system for opti-
mizing delay and power of logic circuits. Furthermore, the
authors further proposed an MIG-based optimization method
by exploiting the error masking property of majority func-
tions [3]. After that, Soeken et al. [36] proposed an MIG
optimization algorithm based on functional hashing. Moreover,
one node-merging approach for MIGs using Boolean SAT
has been presented under the name—functionally-reduced
MIGs (FRMIGs) [20], [37] for lookup tables (LUTs) network.
Besides, a majority-based logic synthesis technique with
a restricted fanout number complying with the technology
constraints of QCA was also proposed to synthesize the
network [39]. Recently, Neutzling et al. [31] proposed a
novel synthesis flow—maj-n —for majority circuits, which
was able to handle gates with an arbitrary number of inputs.
Riener et al. [34], [35] proposed a Boolean resubstitution
approach for MIGs, which re-expresses the logic function of a
node using existing nodes in the network to optimize the size
of logic circuits.

These years, a compact logic representation for a more effi-
cient logic synthesis—XOR-majority-graph (XMG) has been
introduced [21]. Then, Chu et al. [15] proposed a decomposi-
tion algorithm exploiting MAJ to reduce the area or depth of
XMGs. Furthermore, the authors proposed an algebraic rewrit-
ing on XMGs by combining the axiomatic system [1] and XOR

primitives for gaining more optimization opportunities [16].
Despite lots of studies on majority logic have been proposed,
only few of them aim at the minimization of the size of
majority circuits. A work exploiting the node-merging tech-
nique [10], [11] considering observability don’t cares (ODCs)
for optimizing majority circuits has been proposed such that
the corresponding QCA circuits are minimized [17].

The node-merging technique is a logic restructuring tech-
nique that aims at replacing a target node nt with a substitute
node ns to minimize logic circuits without changing the over-
all functionalities. Chen and Wang [12], [13] proposed an
enhanced algorithm called node addition and removal (NAR),
which adds a new node into the circuit to replace a target
node. NAR belongs to the category of redundancy addition
and removal (RAR), which adds redundancies to the origi-
nal circuits for removing the target objects, such as wires or
nodes. This technique can be used in the applications of area
reduction, reliability improvement, or timing optimization of

VLSI circuits [6]–[9], [14], [18], [30]. For the application of
area reduction, when more than one node can be removed due
to a newly added node, the size of the whole circuit will be
reduced. However, the original NAR algorithm is only suitable
for and-inverter-graphs (AIGs) [22], and cannot be applied to
MIGs or XMGs. Thus, in this work, we propose a new NAR
algorithm for majority circuits. Its theoretical details are also
investigated.

We conducted several experiments on a set of major-
ity logic benchmarks provided by EPFL Integrated Systems
Laboratory [50], [51]. The experimental results show that our
new NAR approach can further reduce the gate count of the
well-optimized benchmarks. We also integrate this work with
the state-of-the-art majority logic synthesis tool CirKit [49]
and the EPFL logic synthesis libraries [38]. The results show
that the overall circuit size can be reduced by 15.06% on aver-
age, which is 1.26 times compared to the approach that only
uses the node-merging technique [17], for the same set of
benchmarks. As compared to the approach that only uses the
node-merging technique [17], our method also can reduce the
circuit size either with or without CirKit and the EPFL logic
synthesis library.

The main contributions of this work are twofold.
1) We propose the first NAR algorithm for the majority

logic circuits.
2) The proposed algorithm can be well integrated with the

state-of-the-art majority logic synthesis tool.
The remainder of this article is organized as follows.

Section II introduces the preliminaries of this work. Section III
presents the proposed NAR algorithm for majority logic cir-
cuits. Section IV proposes a technique for accelerating the
computation efficiency of NAR, and introduces the algo-
rithm of circuit size reduction for majority circuits. Finally,
the experimental results and conclusions are presented in
Sections V and VI.

II. PRELIMINARIES

In this section, we review some backgrounds of this work.

A. Background

The input-controlling value on an input determines the
output of the gate independent of the other inputs. The input-
noncontrolling value is opposite to the input-controlling value.
For example, the input-controlling value of an AND gate is 0
and the input-noncontrolling value of an AND gate is 1.

A majority function is an odd-input function that has the
output value of v if and only if more than half of the inputs are
the value of v. A majority-of-three (MAJ) function consists of
three Boolean variables x, y, and z, and is denoted as 〈xyz〉 [42].
An MAJ can be expressed in disjunctive or conjunctive normal
forms as

〈xyz〉 = xy ∨ xz ∨ yz = (x ∨ y)(x ∨ z)(y ∨ z). (1)

Setting any variable to “1” or “0” in an MAJ will make the
other two variables disjunctive or conjunctive, respectively. For
example, when x = 1 or x = 0, 〈xyz〉 becomes an OR gate
as (2) or becomes an AND gate as (3), respectively
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〈1yz〉 = y ∨ z (2)

〈0yz〉 = yz. (3)

An MIG is a directed, acyclic graph consisting of MAJs
and inverters as primitives. An XMG is an extension of MIG,
which additionally introduces XOR primitives into the circuits.
The edges in the MIGs or XMGs can be uncomplemented
or complemented, where complemented edges have a dot on
them. A complemented edge represents the negation of a
node’s function.

The dominators [24] of a gate g is a set of gates that all
the paths from g to any primary outputs (POs) have to pass
through. The side-inputs of a path from gate gx to gy are
the inputs of the nodes that are not in the transitive fanout
cone (TFO) of gx. An MAJ gate has two side-inputs in the
fault-effect propagation path. To propagate a fault-effect to
the POs, these two side-inputs have to be assigned to differ-
ent values. Thus, these two side-inputs of an MAJ gate form
a side-input pair, and the different values of these two side-
inputs are named as a noncontrolling pair [17]. For example,
in Fig. 2(c), if we want to observe the fault-effect from the
input A at the output D, the side-input pair (B, C) has to be
assigned different values, e.g., (B, C) = (0, 1) or (1, 0), to
propagate the fault-effect.

A stuck-at fault in VLSI testing is a fault model used to
represent a manufacturing defect in logic circuits. The model
assumes that a faulty wire or faulty gate is stuck at a fixed
logic value “0” or “1,” referred to stuck-at 0 (sa0) or stuck-at
1 (sa1) fault, respectively. A stuck-at fault test is a process to
find a test pattern that can distinguish a faulty circuit from a
fault-free one. A test pattern needs to activate and propagate
the fault-effect to any POs. A fault is an untestable fault if
there exists no test pattern that can activate and propagate the
fault-effect to any POs in the circuit. An untestable stuck-at
fault on a wire or gate is a redundancy to the circuit because
the fault-effect cannot be observed at any POs. Therefore, an
untestable stuck-at v fault can be replaced with a constant
value v for circuit optimization.

The mandatory assignments (MAs) are the necessary values
assigned to some nodes for detecting a fault in the circuit.
In Boolean circuits, the MAs are obtained by assigning the
inverse value of the faulty value on a target node to activate
the fault-effect, and by assigning the noncontrolling values
on the side-inputs to propagate the fault-effect. By forward
and backward logic implications, more MAs could be further
derived. If the MAs of a fault are inconsistent, e.g., x = 0
and x = 1 are both MAs during the MA derivation process, it
means that no test pattern can detect this fault; therefore, this
fault is untestable.

B. MA Computation for Majority Circuits

The number of MAs is crucial to the minimization of a
logic network in this work. The more MAs we can obtain
during the MA computation, the more possibilities we can
identify the substitute node for a given target node. However,
computing all the MAs for detecting a stuck-at fault in the
circuit is an NP-complete problem [27]. Thus, we adopt

Fig. 3. Example for presenting the node-merging approach. (a) Original
circuit. (b) Resultant circuit after replacing n2 with n3.

the dominator-based MA computation method for a trade-
off between the quality and efficiency. Moreover, we also
integrate the MA computation with the recursive learning
technique [27] with the depth of one for more optimization.
Recently, Chung et al. [17] proposed an MA computation
scheme for majority circuit. In this work, we adopt their
procedure for MA computation.

We take the example in Fig. 3 to demonstrate the concepts
of stuck-at fault and MA computation. In Fig. 3(a), a, b, c,
d, and e are primary inputs (PIs), O1 and O2 are POs, and
n1–n4 are MAJ gates. Given a target node n2, we want to find
the MAs of stuck-at-0 fault on it. As mentioned before, a test
pattern needs to activate and propagate the fault-effect to any
POs. Thus, the value of n2 will be assigned to 1 (the inverse
value of the faulty value “0”) to activate the fault-effect of
stuck-at-0 fault. Then, the fault-effect has to be propagated to
any POs by setting noncontrolling pairs to all the side-input
pairs of all the dominators. We assign (a, e) to (0, 1) and
(1, 0) to the side-input pair of dominator n4 to obtain the
value assignments as {n2 = 1, n4 = 1, a = 0, e = 1, n3 = 1}
and {n2 = 1, n4 = 1, a = 1, e = 0, n1 = 1, d = 1, n3 = 1},
respectively. The intersection of these two value assignments
are {n2 = 1, n3 = 1, n4 = 1}. Since the target node n2 only
has one dominator n4, this set of value assignments are the
MAs for detecting the stuck-at-0 fault on n2.

C. Node-Merging Approach

The node-merging approach was proposed for optimizing
logic circuits considering ODCs [10], [11]. It modeled the
merge of two nodes as a misplaced-wire error in the circuit.
When the error is undetectable, merging these two nodes is
safe since it will not affect the overall functionality of the
circuit. A sufficient Condition was also proposed for searching
legal node mergers as stated in Condition 1 [10], [11].

Condition 1 [10], [11]: Let f denote an error of replacing
nt with ns. If ns = 1 and ns = 0 are MAs for stuck-at 0 and
stuck-at 1 fault tests on nt, respectively, f is undetectable.

Other popular node-merging techniques include SAT sweep-
ing [25], [32], [46], structural hashing [20], and Boolean
resubstitution [34], [35]. SAT sweeping is a method that
merges two functionally compatible nodes by simulating a set
of random patterns and running SAT solvers [25]. Moreover,
the local and global ODC-based algorithms extended the SAT
sweeping to increase the number of nodes merged [32], [46]. A
similar concept of SAT sweeping technique has been applied
for optimizing MIGs [20]. Structural hashing aims at merg-
ing two nodes that share the same fanin nodes in the logic
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network, i.e., structural hashing merges nodes that are struc-
turally equivalent. The structural hashing technique has also
been applied for optimizing MIGs [20]. Boolean resubstitu-
tion aims at re-expressing the logic function of a node by
using other nodes that are already present in the network to
optimize the size of the logic circuit. Note that the differ-
ence between the Boolean resubstitution approach [34], [35]
and the node-merging approach [10], [11] is that Boolean
resubstitution often needs many simulations to decide a better
candidate node for substitution to reduce the number of nodes
in the logic network. Additionally, the Boolean resubstitution
approach [34], [35] is limited to a window-based resubstitu-
tion and usually does not consider ODCs. The node-merging
approach [10], [11] is an ODC-based method considering
ODCs in the process of identifying the node mergers with
a sufficient condition—Condition 1.

A new node-merging approach was proposed for majority
logic circuits by using Condition 1 and the idea of side-input
pair [17]. Here, we use the example in Fig. 3 again to demon-
strate the node-merging approach for majority circuits. For
the nodes n2 and n3, replacing n2 with n3 may cause an
error due to their different functionalities. Because d and n1
are the common inputs to n2 and n3, n2 and n3’s functions
only differ when a and e are the same value v. However,
a = e = v also leads the value of node n4 to v. As a result,
the value of n2 cannot affect n4, which prevents the differ-
ent value of n2 with respect to n3 from being observed at the
POs. Thus, n2 can be replaced with n3 without changing the
overall functionality. The resultant circuit after the merging is
shown in Fig. 3(b), where n2 is removed and n3 is used to
drive n4 for n2.

D. NAR Approach

We also use another example to demonstrate the effec-
tiveness of NAR when the node-merging approach fails.
Fig. 4(a) is an MIG, where a, b, c, d, and e are PIs,
O1–O4 are POs, and n1–n8 are MAJ gates. Note that the
nodes n1, n3–n5, n7, and n8 are equivalent to AND gates
when setting one of their fanin signals to a constant value
of “0.” Given a target node n6, the node-merging approach
fails since it cannot find any substitute nodes in this cir-
cuit. Nevertheless, we can add a new node n9 to replace
the node n6 as shown in Fig. 4(b). After adding n9 into
the circuit, the functionality of this circuit does not change
because n9 does not drive any nodes. However, n9 meets
the requirements of Condition 1 as being a substitute node
for n6. Thus, replacing n6 with n9 is safe in terms of
functionality. Furthermore, when n6 is removed, n1 can be
removed as well. The resultant circuit after these addition
and removal operations is shown in Fig. 4(c). This exam-
ple shows that a target node having no substitute node still
would be replaced by a newly added node. Meanwhile, the
whole circuit can be reduced if this target node has at least
a fanin node driving only one node. That is, the removal of
the target node also eliminates the target node’s fanin node.
Therefore, at least two nodes will be removed after adding
one node.

Fig. 4. Example for presenting the NAR approach. (a) Original circuit.
(b) Resultant circuit after adding n9. (c) Resultant circuit after replacing n6
with n9, and removing n1.

III. PROPOSED NODE ADDITION AND REMOVAL

APPROACH FOR MAJORITY CIRCUITS

In this section, we first propose two sufficient conditions for
replacing a target node with an added substitute node. These
two conditions can be changed with respect to 16 different
types of added substitute nodes. Then, we present the overall
algorithm of the proposed NAR approach for majority circuits.

A. Sufficient Conditions in NAR for Majority Circuits

The NAR approach aims at adding an added substitute node
for replacing an existing target node in the circuits. Based on
Condition 1, we can check whether an added node is able
to replace the target node or not. However, it is quite time-
consuming if we first add new nodes at all possible locations
in the circuit and then use Condition 1 to exhaustively search
the substitute nodes for the target node from these new nodes.
Therefore, we alternatively focus on finding three existing
fanin nodes of an added substitute node satisfying Condition 1.
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Fig. 5. Type 1 added substitute node and its corresponding sufficient
conditions.

Fig. 6. Scenarios for Condition 3. (a) Tnf 1=0. (b) Tnf 1=1. (c) {nf 3 = 0,

nf 1 = 0} implies na = 0. (d) {nf 3 = 0, nf 1 = 1, nf 2 = 0} implies na = 0.

For ease of the discussion, we denote the target node as
nt, the added node as na, and the three fanin nodes of na

as nf 1, nf 2, and nf 3. In Fig. 5, the functionality of na can
be expressed as 〈nf 1nf 2nf 3〉. Afterward, we will derive two
sufficient conditions for na—Conditions 2 and 3. If na satisfies
these two sufficient conditions, na will satisfy Condition 1 such
that it can replace the target node. In the following paragraphs,
we will state Conditions 2 and 3, and explain why they are
useful for finding an added substitute node.

Condition 2: Consider a stuck-at 0 fault test on nt, if nf 1 = 1
and nf 2 = 1 are both MAs for the same fault test, na = 1 is
also an MA for the same fault test.

As we mentioned in Section II, a majority function will
output the value v if and only if more than half of its inputs
are v. Therefore, if nf 1 = 1 and nf 2 = 1 are both MAs for the
stuck-at 0 fault test on nt, na = 1 is an MA for the same fault
test.

However, when Condition 2 is held for an na, na only sat-
isfies the first half of Condition 1, i.e., na = 1 is an MA for
the stuck-at 0 fault test on nt. For na to be an added substitute
node of nt, na = 0 needs to be an MA for the stuck-at 1 fault
test on nt as well. Thus, we further propose another sufficient
condition—Condition 3—to make na satisfy the second half
of Condition 1.

For the ease of discussion, we denote a set of MAs for a
stuck-at v fault test on nt as MAs(nt = sav), where v is the

value of “0” or “1.” We also denote a set of value assignments
logically implied by a set of value assignments A as imp(A).

Condition 3: Consider a stuck-at 1 fault test on nt, if nf 3 = 0
is a value assignment in MAs(nt = sa1), and nf 2 = 0 is a value
assignment in imp((nf 1 = 1) ∪MAs(nt = sa1)), na = 0 is an
MA for the same fault test.

Condition 3 is used to ensure na = 0 is an MA for the stuck-
at 1 fault on nt. When Condition 3 is satisfied, the second
half of Condition 1 will be satisfied as well. The statement
“na = 0 is an MA for the stuck-at 1 fault test on nt” means
that all the test patterns detecting this fault make na = 0. Since
na is an MAJ, at least two of its inputs are “0” for leading
na = 0. If one fanin node, say nf 3, of na has been “0” and
∈ MAs(nt = sa1), we need to find another fanin node that is
also “0” and is ∈ MAs(nt = sa1) as well.

We denote T as the set of test patterns for detecting the
stuck-at 1 fault on nt, and divide T into two parts as Tnf 1=0
and Tnf 1=1, where Tnf 1=0 and Tnf 1=1 represent the subset of
test patterns in T that generate nf 1 = 0, and nf 1 = 1, respec-
tively, as shown in Fig. 6(a) and (b). First, when nf 3 = 0 is a
value assignment in MAs(nt = sa1), then having another fanin
node, say nf 1, as “0” will imply na = 0 as shown in Fig. 6(c).
Hence, all the patterns in Tnf1 = 0 will generate na = 0.
Second, we know that imp((nf 1 = 1) ∪ MAs(nt = sa1)) is a
set of value assignments that are derived by all the test pat-
terns in Tnf 1=1. Since nf 3 = 0 has been a value assignment
in MAs(nt = sa1), when nf 2 = 0 is also a value assign-
ment in imp((nf 1 = 1) ∪ MAs(nt = sa1)), all the patterns in
Tnf1 = 1 imply na = 0 as shown in Fig. 6(d). Therefore, when
Condition 3 is held, all the test patterns in T = Tnf 1=0∪Tnf 1=1
will generate na = 0, i.e., na = 0 is an MA for the stuck-at 1
fault test on nt.

In summary, when Conditions 2 and 3 are held, na = 1 and
na = 0 are MAs for the stuck-at 0 and the stuck-at 1 fault test
on nt, respectively, which is the same as Condition 1. Thus,
we know that na is an added substitute node for nt. These two
sufficient conditions are shown in Fig. 5.

Note that nf 1, nf 2, and nf 3 are not any particular fanin nodes
of na, e.g., nf 1 is not necessary to be the first fanin node of
na. When one fanin node has been considered as nf 1, the other
two fanin nodes will be nf 2 and nf 3. That is, nf 1, nf 2, and nf 3
in Condition 3 are exchangeable.

B. Different Types of the Added Substitute Nodes

In Section III-A, we assume that there is no inverter between
na and its fanin nodes—nf 1, nf 2, and nf 3 in the derivation of
Conditions 2 and 3. However, we observe that we can modify
these two conditions by flipping the values of nf 1, nf 2, nf 3,
or the stuck-at fault for different types of the added substitute
nodes. These modifications could increase the opportunities
for finding more added substitute nodes. We list these differ-
ent types of added substitute nodes with their corresponding
sufficient conditions in Fig. 7.

In Fig. 7, Types 2–8 can be obtained by reversing the val-
ues of nf 1, nf 2, or nf 3, respectively. By reversing the value of
stuck-at fault in Types 1–8, we can obtain Types 9–16 added
substitute nodes.
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Fig. 7. Different types of added substitute nodes and their corresponding sufficient conditions. (a)–(o): Type 2–16.

C. NAR Algorithm for Majority Circuits

The NAR algorithm can be summarized as follows. Given
a target node nt in a majority circuit C. First, we choose an
MA in MAs(nt = sa0) as nf 1. Then the algorithm will search
nf 2 and nf 3 according to Conditions 2 and 3 based on nf 1.
Finally, the node driven by nf 1, nf 2, and nf 3 is the added
substitute node na for nt. The NAR algorithm is shown in
Algorithm 1. First, the algorithm computes the MAs(nt = sa0)
and MAs(nt = sa1), respectively. Then, it chooses an MA n =
v in MAs(nt = sa0) as nf 1. Based on the MA nf 1 = v, the algo-
rithm performs logic implications of nf 1 = v and MAs(nt =
sa1) to obtain imp((nf 1 = v) ∪MAs(nt = sa1)). Finally, nf 3
are the nodes that have the value of v′ in MAs(nt = sa1)) and
nf 2 are the nodes that have different values in MAs(nt = sa0)
and imp((nf 1 = v) ∪ MAs(nt = sa1)). Therefore, the added
substitute node na driven by nf 1, nf 2, and nf 3 is Types 1–8
as shown in lines 4–9 of Algorithm 1. Similarly, in lines 10–
15 of Algorithm 1, we can find the added substitute nodes of
Types 9–16.

Here, we use the same example in Fig. 4 to demonstrate
the proposed NAR algorithm. The detailed value assignments
are also shown in Table I. Given a target node n6, we
want to find its added substitute node. First, we compute the
MAs(n6 = sa0). To activate the fault-effect, the value of n6 is
set to 1. To propagate the fault-effect to the POs, the side-input
pairs of the dominators are set to the corresponding values.
Note that the dominator of n6 is n8, and we have to set the
side-input pairs of the dominators to the noncontrolling pair
enabling the propagation of the fault-effect, i.e., the value of n7
has to be assigned to 1 for the fault-effect propagation. Then,
we derive more MAs by performing logic implications for-
ward and backward. Thus, {n6 = 1, n7 = 1, n1 = 1, d = 1,

n2 = 1, e = 1, n4 = 0, a = 1, b = 1, c = 1, n3 = 1,

TABLE I
VALUE ASSIGNMENTS OF THE PROPOSED NAR APPROACH PERFORMING

ON THE EXAMPLE IN FIG. 4

n5 = 1, n8 = 1} ∈ MAs(n6 = sa0). Second, we compute the
MAs(n6 = sa1) in the same manner, and they are {n6 = 0,

n7 = 1, n2 = 1, n4 = 0, e = 1, n8 = 0}. Third, assume
that we choose n4 as nf 3, and n3 as nf 1, we next compute
imp((n3 = 1) ∪ MAs(n6 = sa1)). The implication results are
{n6 = 0, n7 = 1, n2 = 1, n4 = 0, e = 1, n8 = 0, n3 = 1,

b = 1, c = 1, d = 1, n1 = 0, a = 0, n5 = 0}. As a result,
one of a, n1, and n5 can be selected as nf 2 because they all
satisfy Conditions 2 and 3. If we select n5 as nf 2, n9 that is
driven by n3, n5, and n4 is an added substitute node for n6 as
shown in Fig. 4(c). n9 will satisfy Condition 1, which means
that n9 can be viewed as ns in Condition 1. Merging n6 with
n9 will not affect the functionality of the circuit. Note that we
do not consider n8 as nf 2. The reason is that when selecting
n8 as nf 2, the replacement of n6 with n9 will result in a cycle,
which is not allowed in this work.
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Algorithm 1: NAR Algorithm for Majority Circuits

1 Given a node nt in a majority circuit C.
2 Compute MAs(nt = sa0).
3 Compute MAs(nt = sa1).
4 for each MA n = v in MAs(nt = sa0)
5 (i) nf 3_set ← nodes that have the value of v′ in

MAs(nt = sa1).
6 (ii) Take n as nf 1.
7 (iii) Compute imp((nf 1 = v) ∪ MAs(nt = sa1)).
8 (iv) nf 2_set ← nodes that have different values in

MAs(nt = sa0) and imp((nf 1 = v) ∪ MAs(nt = sa1)).

9 The set of na, which are driven by nf 1, nf 2, and nf 3, are
Type 1∼ Type 8.

10 for each MA n = v in MAs(nt = sa1)
11 (i) nf 3_set ← nodes that have the value of v′ in

MAs(nt = sa0).
12 (ii) Take n as nf 1.
13 (iii) Compute imp((nf 1 = v) ∪ MAs(nt = sa0)).
14 (iv) nf 2_set ← nodes that have different values in

MAs(nt = sa1) and imp((nf 1 = v) ∪ MAs(nt = sa0)).

15 The set of na, which are driven by nf 1, nf 2, and nf 3, are
Type 9 ∼ Type 16.

IV. MA REUSE AND CIRCUIT SIZE REDUCTION FOR

MAJORITY CIRCUITS

In this section, we first present a technique to accelerate the
MA computation in the NAR algorithm—MA reuse. Then we
present our overall algorithm, including redundancy removal,
node merging, and NAR techniques, for majority circuit size
reduction.

A. MA Reuse

The MA computation plays an important role in finding
added substitute nodes. If the MA computation can be accel-
erated, the NAR algorithm will be more efficient. We observed
that the computed MAs of different fault tests could be iden-
tical. Chen and Wang [10], [11] proposed the MA reuse
technique for AIGs. However, the MA reuse technique for
majority circuits has not been considered yet. Hence, the tech-
nique of MA reuse for majority circuits is proposed in this
work for obtaining MAs in a more efficient manner.

We use an example in Fig. 8(a) to demonstrate this idea.
We assume that nk has a fanin node ni only driving nk and a
constant value of “0” as one fanin value. The fanout of nk is
not explicitly expressed in Fig. 8. First, we select nk as the tar-
get node for computing the MAs(nk = sa0). nk is set to “1” to
activate the fault-effect and the side-input pairs of dominators
of nk are set to their corresponding input-noncontrolling values
to propagate the fault-effect. For ease of discussion, we denote
these assignments for propagating the fault-effect as P. After
performing logic implications of {nk = 1, P}, MAs(nk = sa0)
are obtained as {nk = 1, ni = 1, nj = 1, imp(P)}. Next, we
consider the computation of MAs(ni = sa0). Similarly, to acti-
vate the fault-effect on ni’s stuck-at 0 fault, ni is set to 1.

Fig. 8. Scenarios for MA reuse. (a) MAs(ni = sa0) = MAs(nk = sa0).
(b) MAs(ni = sa1) = MAs(nk = sa0). (c) MAs(ni = sa1) = MAs(nk =
sa1). (d) MAs(ni = sa0) = MAs(nk = sa1).

Because ni only drives nk, the dominators of ni are the domina-
tors of nk and nk itself. Thus, {nj = 1, P} are the assignments
to propagate the fault-effect of ni’s stuck-at 0 fault. After per-
forming implications of {ni = 1, nj = 1, P}, MAs(ni = sa0)
are obtained as {nk = 1, ni = 1, nj = 1, imp(P)}, which
are the same as MAs(nk = sa0). Hence, when computing
MAs(ni = sa0), we can reuse MAs(nk = sa0).

This idea can be applied in the circuit of Fig. 8(b), where
MAs(ni = sa1) will be the same as MAs(nk = sa0).
Furthermore, we can extend this idea to the circuit of Fig. 8(c),
where nk has a fanin node ni only driving nk and a con-
stant value of “1” as one fanin value. Based on the similar
derivations we presented, we can reuse MAs(nk = sa1) for
computing MAs(ni = sa1). Again, in Fig. 8(d), MAs(ni = sa0)
are identical to MAs(nk = sa1).

B. Circuit Size Reduction for Majority Circuits

1) Redundancy Removal: We know that the MAs are the
unique and necessary value assignments for detecting a stuck-
at fault on a node of circuit. If the computed MAs are
inconsistent, the fault is untestable and the node is redun-
dant. Specifically, in the NAR algorithm, we first compute
the MAs(nt = sa0) and MAs(nt = sa1), respectively. If we
find that the MAs(nt = sa0)/MAs(nt = sa1) are inconsistent,
we can replace nt with a constant value “0”/“1” and propa-
gate this value “0”/“1” forward for simplifying circuits. This
redundancy removal operation can be used to reduce the circuit
size.

2) Node-Merging: As mentioned in Section II, using the
node-merging approach for finding a substitute node ns for a
target node nt requires the computations of MAs(nt = sa0) and
MAs(nt = sa1) [17]. Since the NAR algorithm also requires
these two sets of MAs as shown in Algorithm 1, we can inte-
grate the node-merging approach with the NAR algorithm for
majority circuit size reduction. Given a target node nt, we first
compute the MAs(nt = sa0) and MAs(nt = sa1). If we have
found a substitute node ns for nt, we then directly apply the
node-merging approach for circuit size reduction.

3) Overall Algorithm: The overall circuit size reduction
algorithm for majority circuits is shown in Algorithm 2. Given
a majority circuit C, each node in C is selected as nt in
the depth-first-search (DFS) order from the POs to PIs. We
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Algorithm 2: Majority Circuit Size Reduction
Input: A given majority circuit C.
Output: An optimized majority circuit Copt.

1 for each node nt of C in DFS order from POs to PIs
2 Compute MAs(nt = sa0) with MA reuse.

// Redundancy removal
3 if (MAs(nt = sa0) is inconsistent) replace nt with 0

and simplify the circuit, continue.
4 Compute MAs(nt = sa1) with MA reuse.
5 if (MAs(nt = sa1) is inconsistent) replace nt with 1

and simplify the circuit, continue.
// Node-merging for finding the ns

6 Substitute_set ← nodes having different values in
MAs(nt = sa0) and MAs(nt = sa1).

7 if (Substitute_set �= ∅) replace nt with a node in
Substitute_set, continue.
// NAR for finding the na

8 if (nt has at least a fanin node only driving nt)
9 for each MA n = v in MAs(nt = sa0)

10 (i) nf 3_set ← nodes having value of v′ in
MAs(nt = sa1).

11 (ii) Take n as nf 1.
12 (iii) Compute

imp((nf 1 = v) ∪ MAs(nt = sa1)).
13 (iv) nf 2_set ← nodes having different values

in MAs(nt = sa0) and
imp((nf 1 = v) ∪ MAs(nt = sa1)).

14 (v) if (nf 3_set �= ∅ and nf 2_set �= ∅) replace
nt with a node driven by nf 1, nf 2, and nf 3,
break.

15 if (nt has been replaced) continue.
16 for each MA n = v in MAs(nt = sa1)
17 (i) nf 3_set ← nodes having value of v′ in

MAs(nt = sa0).
18 (ii) Take n as nf 1.
19 (iii) Compute

imp((nf 1 = v) ∪ MAs(nt = sa0)).
20 (iv) nf 2_set ← nodes having different values

in MAs(nt = sa1) and
imp((nf 1 = v) ∪ MAs(nt = sa0)).

21 (v) if (nf 3_set �= ∅ and nf 2_set �= ∅) replace
nt with a node driven by nf 1, nf 2, and nf 3,
break.

compute the MAs(nt = sa0) and MAs(nt = sa1) with the
MA reuse technique. If the MAs are inconsistent, the redun-
dancy removal operation is applied. If the inconsistent MAs in
MAs(nt = sa0) or MAs(nt = sa1) occur, we consider the next
node in C after replacing nt with the constant value “0” or
“1,” respectively. Otherwise, we search for the substitute node
ns for nt. If we can find the nodes having different values in
MAs(nt = sa0) and MAs(nt = sa1), these nodes are ns for nt.
However, if nt has no ns for node merging, and nt has at least
one fanin node only driving nt, the algorithm applies the NAR
technique as shown in lines 8–21 of Algorithm 2 for circuit

TABLE II
EXPERIMENTAL RESULTS OF REPLACEABLE NODE IDENTIFICATION ON

WELL OPTIMIZED MIG BENCHMARKS [1]–[3] BY USING

REIMPLEMENTED APPROACH [17] AND OUR APPROACH

size reduction. After considering all the nodes in C as nt for
optimization, the optimized majority circuit Copt is returned.

4) Time Complexity of the Overall Algorithm: The pseu-
docode of the overall circuit size reduction algorithm for
majority circuits is shown in Algorithm 2. First, our algorithm
goes through each node in the circuit in an outer for-loop
as shown in lines 1–21 of Algorithm 2. If the node-merging
approach fails to find a substitute node for the given target
node nt and nt has at least one fanin node only driving nt, we
traverse the set of MAs for finding the na as shown in lines
9–14 and lines 16–21 of Algorithm 2. The complexity of our
algorithm currently is O(nm), where n is the number of nodes
in the circuit and m represents the number of the MAs for an
nt. Second, the core of our algorithm is the logic implication
for MA computation. The more MAs we can compute, the
more nodes we can identify to replace the nt. For each MA
in the MA set, we next conduct logic implication in the inner
for-loop in lines 12 and 19 of Algorithm 2. Assume that the
complexity of one logic implication is O(p). Then, the overall
time complexity of our algorithm will be O(nmp).

To reduce the time complexity of MA computation, we pro-
pose the MA reuse technique. However, it is not the case that
the MA reuse technique is always applicable to one node.
Hence, the MA reuse technique does not contribute to the
complexity reduction to our algorithm. Nevertheless, the MA
reuse technique does reduce the required CPU time as will be
presented in the experimental results in Table III.
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TABLE III
COMPARISON OF EXPERIMENTAL RESULTS ON CIRCUIT SIZE AND DEPTH ON WELL OPTIMIZED MIG BENCHMARKS [1]–[3]

BETWEEN [17] AND OUR APPROACH

V. EXPERIMENTAL RESULTS

We implemented our NAR approach in C++ language,
and conducted our experiments on an Intel Xeon E5-2650v2
2.60-GHz CentOS 6.7 platform with 64 GB. The MIG bench-
marks were provided in [1], [2], and [3] and can be accessed
from the EPFL Integrated Systems Laboratory [50], [51].
The XMG benchmarks we used were from EPFL Integrated
Systems Laboratory [50], which were in the format of AIG.
We then transformed the AIGs to XMGs by applying the
methods proposed in [15] and [16] before the experiments.

We conducted four experiments. The first one is to present
the different capabilities of replaceable node identification
on MIGs between the node-merging approach [17] and our
approach. The second one shows the circuit size reductions
for MIGs by using the node-merging approach [17], Boolean
resubstitution approach [34], [35], maj-n approach [31], cut-
rewriting approach [38], and our approach. The third one
shows the circuit size reductions for XMGs by using the
node-merging approach [17] and our approach. Additionally,
to show the applicability of our work, we also integrate our
approach with the logic synthesis tool CirKit [49] and the
EPFL logic synthesis libraries [38] for further optimization.
The optimized circuits were also verified by using the logic
equivalent checking tool—cec [47]. Additionally, since the
quantum-dot cell cannot drive an arbitrary number of fanouts
in practice, the number of fanouts for each node will be
restricted to n, when running the proposed algorithm dur-
ing QCA technology mapping [39]. We only performed
our method when the number of fanouts is not exceeded.

We conducted experiments for circuit size optimization by
setting n = 4.

A. Replaceable Node Identification

A node is a replaceable node if and only if there exists a
substitute node ns or an added substitute node na for it. Given
a target node, our approach first finds its substitute nodes. If no
substitute nodes exist, it alternatively finds the added substitute
nodes. In this experiment, the benchmarks are well-optimized
circuits [1]–[3] and can be directly accessed online [51]. Each
node in the circuit will be considered as a target node once.
We compare the number of replaceable nodes in our approach
against the reimplemented work [17], which only applies the
node-merging technique. The experimental results are shown
in Table II.

In Table II, Columns 1–3 lists the information of bench-
marks, including names, the number of PIs and POs, and
nodes. Columns 4–5 lists the results, including the percent-
age of the replaceable node count and the required CPU
time measured in second, produced by the approach only
using the node-merging approach [17]. Columns 6–7 lists the
corresponding experimental results of our approach.

For example, the benchmark aes_core has 789 PIs and 668
POs, and 21522 nodes. 11.4% of nodes or 2387 nodes in the
circuit are replaceable nodes using the node-merging approach.
However, our approach can find the replaceable nodes for
15.2% of nodes or 3183 nodes in the circuit. According to
Table II, the node-merging approach only found the replace-
able nodes for 6.3% nodes in the benchmarks on average.
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TABLE IV
COMPARISON OF EXPERIMENTAL RESULTS ON CIRCUIT SIZE AND DEPTH ON EPFL MIG BENCHMARKS [50] BETWEEN

THE BOOLEAN RESUBSTITUTION [34] AND OUR APPROACH

While our approach found 9.1% replaceable nodes in the
benchmarks on average with the CPU time of 345.2 s.

In summary, our approach can find replaceable nodes for
44% more target nodes with the CPU time overhead of only
171.8 s on average.

B. Circuit Size Reduction

In this experiment, we implemented two versions of our
approach: 1) for nondepth preservation, which focuses on opti-
mizing the circuit size allowing depth overhead if any and
2) for depth preservation, which optimizes the circuit size
without changing circuit’s depth. We compare the circuit size
reduction using our approach against the work [17] at first.
The experiments were conducted on well-optimized circuits
represented in MIGs [1]–[3], and the results are as shown
in Table III. Note that the initial node count in each bench-
mark is slightly different from the results shown in [17]. The
reason is that we do not have the original MIG benchmarks
as listed in [17]. Presently, the MIG benchmarks we have
were downloaded from the website [51] and Table III shows
their information. To confirm the correctness of the benchmark
information, we also use another synthesis tool CirKit [49] to
obtain the information. The results show that the benchmark
information in Table III are matched correctly.

In Table III, Columns 1–4 lists the information of bench-
marks, including names, the number of PIs and POs, nodes,
and depth. Columns 5–8 list the experimental results produced
by the reimplemented node-merging approach [17], includ-
ing the percentage of size reduction, the percentage of depth
reduction, the required CPU time, and the percentage of the
required CPU time reduction by using the MA reuse tech-
nique. Columns 9–12 and 13–16 lists the corresponding results
of our nondepth preserved and depth preserved versions,
respectively. For a fair comparison, we only applied the node-
merging approach [17] and our approach once on the MIG
benchmarks.

According to Table III, our approach achieved more cir-
cuit size reduction with a ratio of 1.35 as compared with the

approach that only uses node-merging technique [17]. The MA
reuse technique also decreases the required CPU time for the
approaches by 16.26%, 21.20%, and 11.03%, respectively, on
average.

Then, we compare our approach against the Boolean resub-
stitution method as shown in Table IV. The maximum number
of PIs in a window of Boolean resubstitution is set to 6.
The benchmarks we used were from the EPFL Integrated
Systems Laboratory [50]. In Table IV, Columns 1–4 lists
the information of benchmarks. Columns 5–7 list the results
produced by the Boolean resubstitution approach [34], [35],
including the percentage of size reduction, the percentage
of depth reduction, and the required CPU time measured
in second. Columns 8–10 and 11–13 lists the corresponding
results of our nondepth preserved and depth preserved ver-
sions, respectively. For a fair comparison, we only applied
our method and the Boolean resubstitution method once on
the EPFL benchmarks and evaluated the resultant circuits
produced by these two methods.

According to Table IV, our nondepth preserved approach
achieved more circuit size reduction with a ratio of 1.25
as compared with the Boolean resubstitution approach.
Additionally, our depth preserved approach can reduce the cir-
cuit node count by 9.45% on average without increasing the
depth. The Boolean resubstitution approach can optimize the
circuit more efficiently but increase the depth of the circuit.

To show the optimization capability of the proposed
approach, we also compare our approach against other size
optimization methods for MIGs—cut-rewriting [38], and maj-
n [31] approaches. The cut size of the cut-rewriting approach
is set to 4, and the maximum number of inputs is limited to
3 in the maj-n approach. The experimental results are shown
in Table V. Note that for a fair comparison, we only applied
the cut-rewriting approach by “cut_rewrite” implemented in
the EPFL libraries [38], the maj-n approach by “&if -M 3”
proposed by Neutzling et al. [31], and our two versions of the
proposed approach for once on the benchmarks.

The MIG benchmarks we used are the same as listed in
Table IV. In Table V, Columns 5–7 lists the results produced
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TABLE V
COMPARISON OF EXPERIMENTAL RESULTS ON CIRCUIT SIZE AND DEPTH ON EPFL MIG BENCHMARKS [50] AMONG

CUT-REWRITING APPROACH [38], MAJ-N APPROACH [31], AND OUR APPROACH

TABLE VI
COMPARISON OF EXPERIMENTAL RESULTS ON CIRCUIT SIZE AND DEPTH ON WELL-OPTIMIZED XMG BENCHMARKS [15], [16]

BETWEEN [17] AND OUR APPROACH

by the cut-rewriting approach [38], including the percent-
age of size reduction, the percentage of depth reduction,
and the required CPU time measured in second. Columns
8–10, 11–13, and 14–16 lists the corresponding results of
maj-n, our nondepth preserved, and depth preserved versions,
respectively.

According to Table V, our nondepth preserved version
achieved more circuit size reduction with a ratio of 1.12 and
1.69 as compared with the cut-rewriting approach and the maj-
n approach, respectively. For the depth preserved version, our
result is still competitive.

After that, we conducted the experiment of circuit size
reduction on XMGs. The XMG benchmarks we used were
also from EPFL Integrated Systems Laboratory [50], which
were originally provided in the format of AIG. We transformed
the AIGs to XMGs before the experiments by applying the
methods proposed in [15] and [16].

Similarly, the corresponding experimental results for XMGs
are summarized in Table VI. Our two versions of approaches

achieved more circuit size reduction with a ratio of 1.43 and
1.29 as compared with the approach that only uses node-
merging technique [17], respectively. Note that our approach
focuses on optimizing MAJ nodes from the circuits. For XOR

nodes in XMGs, we do not deal with them. This is because
XOR nodes do not have controlling and noncontrolling values.
As mentioned in Section II, the MAs are necessary values
assigned to some nodes in the circuits for detecting a fault
on a node. However, detecting a fault on an XOR node will
not generate any necessary assignments on the XOR node,
which means that Conditions 1–3 cannot be applied on XOR

nodes. Thus, our approach only optimizes the MAJ nodes in
the XMGs.

In the last experiment, we integrate the state-of-the-art logic
synthesis tool for majority logic—CirKit [49] and the EPFL
logic synthesis library [38]—with the approach that only uses
the node-merging technique [17], and our approach, respec-
tively, to present the effectiveness of our approach for circuit
optimization. Here, we use the original MIG benchmarks [1],
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TABLE VII
COMPARISON OF EXPERIMENTAL RESULTS AMONG mig_resub. × 6, ([17] + mig_resub.) × 3, AND (Ours + mig_resub.) × 3

TABLE VIII
COMPARISON OF EXPERIMENTAL RESULTS AMONG cut_rewrite × 6, ([17] + cut_rewrite) × 3, AND (Ours + +cut_rewrite) × 3

which can be directly accessed online [51]. The experimen-
tal results are summarized in Table VII. The synthesis script
that is integrated with our approach is “mig_resubstitution,”
which has been integrated in the synthesis tool CirKit and
the EPFL logic synthesis library. Columns 5–7 show the

results after running mig_resubstitution script for six times—
mig_resub. × 6. Columns 8–10 list the results produced by the
approach that only uses the node-merging technique [17] fol-
lowed by mig_resubstitution script for three times iteratively—
([17] + mig_resub.) × 3. Columns 11–13 list the results
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produced by our approach followed by mig_resubstitution
script for three times iteratively—(Ours + mig_resub.) × 3.
According to Table VII, the integration of our approach and
mig_resubstitution achieved more size reduction with a ratio of
1.26 as compared to the integration of the approach that only
uses the node-merging technique [17] and mig_resubstitution.
As compared to mig_resubstitution only, the circuit size reduc-
tion by using our approach is even higher. Additionally, we
also integrate our approach with the cut-rewriting approach,
which also has been integrated in the EPFL logic synthesis
library as a synthesis script—“cut_rewrite,” based on the same
experimental scheme. The corresponding experimental results
are as shown in Table VIII. According to Table VIII, the inte-
gration of our approach and cut_rewrite can achieve more size
reduction with a ratio of 1.48 as compared to the integration of
the approach that only uses the node-merging technique [17]
and cut_rewrite. From these experimental results, we realize
that our approach can be well integrated with the state-of-the-
art tool and libraries to achieve more circuit size reduction on
majority circuits.

VI. CONCLUSION

In this article, we propose an NAR approach for major-
ity circuit optimization. The NAR approach adds a new node
in the circuit for replacing the given target node. We also
propose an MA reuse technique for accelerating the added
substitute node identification. The integration of our approach,
the state-of-the-art synthesis tool CirKit, and the EPFL logic
synthesis libraries significantly elevates the optimization capa-
bility for majority circuits. Scalability is a crucial problem in
the proposed NAR approach. Presently, the proposed NAR
approach only focuses on reducing the node number in a
circuit as many as possible without considering runtime over-
head. Additionally, if the NAR approach can be extended
to adding more than one node, the opportunities for circuit
restructuring and size reduction would increase. Our future
work is to propose an approach to balance the circuit size
reduction and runtime overhead as well as consider multiple
node addition.
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